Effect of anthocyanin to post-orthodontic treatment: a review
Keywords:
anthocyanin, orthodontic relapse, osteoblast, osteoclastAbstract
Background: Orthodontic relapse prevention can be achieved by mechanical or pharmacological means, although these methods may have adverse effects on orthodontic treatment. Anthocyanin has the potential to be utilized as an alternate method for preventing post-orthodontic relapse due to its cost-effectiveness, abundance in nature, and few adverse effects. Purpose: to discuss about the potential of anthocyanin in preventing orthodontic recurrence following orthodontic treatment. Review: The literature sources were acquired from PubMed, Scopus, and Google Scholar. The keywords utilized were ‘anthocyanin’, ‘relapse’, and ‘orthodontic treatment’. A total of 229 journals were gathered from the literature. The literature was screened using criteria of inclusion, exclusion, and duplication. There are 30 journals included in the literature. Anthocyanins can serve as a cost-effective and readily available substitute for preventing recurrence following orthodontic treatment. Anthocyanins inhibited orthodontic relapse by inhibiting osteoclasts and promoting osteoblast development. Multiple investigations have demonstrated that anthocyanins exhibit no toxicity in vitro, in vivo, and in human trials. Conclusion: Anthocyanin has the ability to prevent relapse following orthodontic treatment by decreasing the formation of osteoclasts and enhancing osteoblast proliferation.
References
Alhasyimi AA, Suparwitri S, Christnawati C. Effect of carbonate apatite hydrogeladvanced platelet-rich fibrin injection on osteoblastogenesis during orthodontic relapse in rabbits. Eur J Dent. 2021; 15(3): 412-419. doi: 10.1055/s-0040-1721234
Alhasyimi AA, Sunarintyas S, Soesatyo MH. Pengaruh implantasi subkutan logam kobalt kromium sebagai bahan alternatif mini screw orthodontics terhadap reaksi jaringan kelinci albino. Majalah Kedokteran Gigi Indonesia. 2015; 1(1): 94-101.
Alhammadi MS, Halboub E, Fayed MS, Labib A, El-Saaidi C. Global distribution of malocclusion traits: a systematic review. Dental Press J Orthod. 2018; 23(6): 40e1–e10.
Arianda TA, Rezqita P, Pudyani PS, Rosyida NF, Alhasyimi AA. Effect of cocoa administration on osteoblast counts and alkaline phosphatase levels during orthodontic tooth movement in rats. J Orofac Sci. 2020; 12: 101–106.
Rosyida NF, Ana ID, Alhasyimi AA. The use of polymers to enhance post-orthodontic tooth stability. Polymers. 2023; 15(1): 103. doi: 10.3390/polym1501010
Suparwitri S, Christnawati, Retnaningrum Y, Alhasyimi AA. Effects of administering the soybean isoflavone genistein on alkaline phosphatase levels during orthodontic tooth movement in young and old rabbits. Arch Orofac Sci. 2021; 16(1): 39–47. doi: 10.21315/aos2021.16.1.4
Fraser D, Caton J, Benoit DSW. Periodontal wound healing and regeneration: insights for engineering new therapeutic approaches. Front. Dent. Med. 2022; 3: 815810. doi: 10.3389/fdmed.2022.815810
Alhasyimi AA, Pudyani PP, Asmara W, Ana ID. Enhancement of post-orthodontic tooth stability by carbonated hydroxyapatiteincorporated advanced platelet-rich fibrin in rabbits. Orthod Craniofac Res. 2018; 21(2): 112-118. doi: 10.1111/ocr.12224
Al Yami EA, Kuijpers-Jagtman AM, van’t Hof MA. Stability of orthodontic treatment outcome:
follow-up until 10 years postretention. Am J Orthod Dentofacial Orthop. 1999; 115(3): 300-304. doi: 10.1016/s0889-5406(99)70333-1
Kennel KA, Drake MT. Adverse effects of bisphosphonates: implications for osteoporosis management. Mayo Clin Proc. 2009; 84(7): 632-638. doi: 10.1016/S0025-6196(11)60752-0
Enaru B, Drețcanu G, Pop TD, Stǎnilǎ A, Diaconeasa Z. Anthocyanins: factors affecting their stability and degradation. Antioxidants (Basel). 2021; 10(12):1967. doi: 10.3390/antiox10121967
Liu J, Zhou H, Song L, Yang Z, Qiu M, Wang J, Shi S. Anthocyanins: promising natural products with diverse pharmacological activities. Molecules. 2021; 26(13): 3807. doi: 10.3390/molecules26133807
Mao W, Huang G, Chen H, Xu L, Qin S, Li A. Research progress of the role of anthocyanins
on bone regeneration. Front Pharmacol. 2021; 12: 773660. doi: 10.3389/fphar.2021.773660
Alhasyimi AA, Rosyida NF, Rihadini MS. Postorthodontic relapse prevention by administration of grape seed (vitis vinifera) extract containing cyanidine in rats. Eur J Dent. 2019; 13(4): 629-634.
doi: 10.1055/s-0039-3401440
Ayvaz H, Cabaroglu T, Akyildiz A, Pala CU, Temizkan R, Ağçam E, Ayvaz Z, Durazzo A, Lucarini M, Direito R, Diaconeasa Z. Anthocyanins: metabolic digestion, bioavailability, therapeutic effects, current pharmaceutical/industrial use, and innovation potential. Antioxidants (Basel).
; 12(1): 48. doi: 10.3390/antiox12010048
Mattioli R, Francioso A, Mosca L, Silva P. Anthocyanins: A comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules. 2020; 25(17): 3809. doi: 10.3390/molecules25173809
Nicolin V, De Tommasi N, Nori SL, Costantinides F, Berton F, Di Lenarda R. Modulatory effects of plant polyphenols on bone remodeling: A prospective view from the bench to bedside. Front Endocrinol (Lausanne). 2019; 10(494): 1–9. doi: 10.3389/fendo.2019.00494
Bjering R, Birkeland K, Vandevska- Radunovic V. Anterior tooth alignment: A comparison of orthodontic retention regimens 5 years posttreatment. Angle Orthod. 2015; 85(3): 353–359. doi: 10.2319/051414-349.1
Zhao N, Lin J, Kanzaki H, Ni J, Chen Z, Liang W, et al. Local osteoprotegerin gene transfer inhibits relapse of orthodontic tooth movement. Am J Orthod Dentofac Orthop. 2012; 141(1): 30–40.
doi: 10.1016/j.ajodo.2011.06.035
Šmídová B, Šatínský D, Dostálová K, Solich P. The pentafluorophenyl stationary phase shows a unique separation efficiency for performing fast chromatography determination of highbush blueberry anthocyanins. Talanta. 2017; 16: 249–254. doi: 10.1016/j.talanta.2017.01.061
Park KH, Gu DR, So HS, Kim KJ, Lee SH. Dual role of cyanidin-3-glucoside on the differentiation of bone cells. J Dent Res. 2015; 94(12): 1676–83. doi: 10.1177/0022034515604620
Weaver CM, Alekel DL, Ward WE, Ronis MJ. Flavonoid Intake and Bone Health. J Nutr Gerontol Geriatr. 2012; 31(3): 239–253. doi: 10.1080/21551197.2012.698220
Raut N, Wicks SM, Lawal TO, Mahady GB. Epigenetic regulation of bone remodeling by natural compounds. Pharmacol Res. 2019; 147(12): 104350. doi: 10.1016/j.phrs.2019.104350
Tena N, Martín J, Asuero AG. State of the art of anthocyanins: Antioxidant activity,
sources, bioavailability, and therapeutic effect in human health. Antioxidants. 2020;
(5). doi: 10.3390/antiox9050451
Chen JR, Lazarenko OP, Wu X, Kang J, Blackburn ML, Shankar K, et al. Dietaryinduced
serum phenolic acids promote bone growth via p38 MAPK/β-catenin canonical Wnt signaling. J Bone Miner Res. 2010; 25(11): 2399–2411. doi: 10.1002/jbmr.137
Zhang J, Lazarenko OP, Blackburn ML, Shankar K, Badger TM, Ronis MJJ, et al. Feeding blueberry diets in early life prevent senescence of osteoblasts and bone loss in ovariectomized adult female rats. PLoS One. 2011; 6(9). doi: 10.1371/journal.pone.0024486
Park JS, Park MK, Oh HJ, Woo YJ, Lim MA, Lee JH, et al. Grape-Seed proanthocyanidin extract as suppressors of bone destruction in inflammatory autoimmune arthritis. PLoS One. 2012; 7(12): 1–10. doi: 10.1371/journal.pone.0051377.
Moriwaki S, Suzuki K, Muramatsu M, Nomura A, Inoue F, Into T, et al. Delphinidin, One of the Major Anthocyanidins, Prevents Bone Loss through the Inhibition of Excessive Osteoclastogenesis in Osteoporosis Model Mice. Wani MR, editor. PLoS One. 2014; 9(5): e97177. doi : 10.1371/journal.pone.0097177.
Saulite L, Jekabsons K, Klavins M, Muceniece R, Riekstina U. Effects of malvidin, cyanidin and delphinidin on human adipose mesenchymal stem cell differentiation into adipocytes, chondrocytes and osteocytes. Phytomedicine. 2019; 53: 86–95. doi: 10.1016/j.phymed.2018.09.029
Dou C, Li J, Kang F, Cao Z, Yang X, Jiang H, et al. Dual effect of cyanidin on RANKL-Induced
differentiation and fusion of osteoclasts. J Cell Physiol. 2016; 231(3): 558–567.
doi: 10.1002/jcp.24916
Kenkre JS, Bassett JHD. The bone remodelling cycle. Vol. 55, Annals of Clinical Biochemistry; 2018. 1–44. doi: 10.1177/0004563218759371.
Tobeiha M, Moghadasian MH, Amin N, Jafarnejad S. RANKL / RANK / OPG Pathway : a mechanism involved in exercise-induced bone remodeling. Biomed Res Int. 2020; 2020: 6910312.
doi: 10.1155/2020/6910312
Khoo HE, Azlan A, Tang ST, Lim SM. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res. 2017; 61(1): 1–21. doi: 10.1080/16546628.2017.1361779
He J, Monica Giusti M. Anthocyanins: Natural colorants with health-promoting properties. Annu Rev Food Sci Technol. 2010; 1(1): 163–87. doi: 10.1146/annurev.food.080708.100754
European Food Safety Authority. Scientific Opinion on the re‐evaluation of anthocyanins (E 163) as a food additive. EFSA J. 2013; 11(4). doi: 10.2903/j.efsa.2013.3145
Olivas-Aguirre FJ, Rodrigo-García J, Martínez-Ruiz NDR, Cárdenas-Robles AI, Mendoza-Díaz SO, Álvarez-Parrilla E, et al. Cyanidin-3-O-glucoside: Physicalchemistry, foodomics and health effects.
Molecules. 2016; 21(9): 1–30. doi: 10.3390/molecules21091264.
Zia Ul Haq M, Riaz M, Saad B. Anthocyanins and Human Health: Biomolecular and therapeutic aspects. Springer; 2016. 145 p. (SpringerBriefs in Food, Health, and Nutrition). doi: 10.1007/978-3-319-26456-1.
Pojer E, Mattivi F, Johnson D, Stockley CS. The case for anthocyanin consumption to promote human health: A review. Compr Rev Food Sci Food Saf. 2013; 12(5): 483–508. doi: 10.1111/1541-4337.12024
Bueno JM, Ramos-Escudero F, Sáez-Plaza P, Muñoz AM, Navas MJ, Asuero AG. Analysis and Antioxidant Capacity of Anthocyanin Pigments. Part I: General Considerations Concerning Polyphenols and Flavonoids. Crit Rev Anal Chem. 2012; 42(2): 102–25.
doi: 10.1080/10408347.2011.632312
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.